Heuristic approaches for support vector machines with the ramp loss
نویسندگان
چکیده
Recently, Support Vector Machines with the ramp loss (RLM) have attracted attention from the computational point of view. In this technical note, we propose two heuristics, the first one based on solving the continuous relaxation of a Mixed Integer Nonlinear formulation of the RLM and the second one based on the training of an SVM classifier on a reduced dataset identified by an integer linear problem. Our computational results illustrate the ability of our heuristics to handle datasets of much larger size than those previously addressed in the literature.
منابع مشابه
Robust Support Vector Machine Using Least Median Loss Penalty
It is found that data points used for training may contain outliers that can generate unpredictable disturbance for some Support Vector Machines (SVMs) classification problems. No theoretical limit for such bad influence is held in traditional convex SVM methods. We present a novel robust misclassification penalty function for SVM which is inspired by the concept of “Least Median Regression”. I...
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملA New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate
Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which conside...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملSupport Vector Machines with the Ramp Loss and the Hard Margin Loss
In the interest of deriving classifiers that are robust to outlier observations, we present integer programming formulations of Vapnik’s support vector machine (SVM) with the ramp loss and hard margin loss. The ramp loss allows a maximum error of 2 for each training observation, while the hard margin loss calculates error by counting the number of training observations that are misclassified ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optimization Letters
دوره 8 شماره
صفحات -
تاریخ انتشار 2014